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ABSTRACT

)
' A field study of the vortex-induced oscillations of 76.5' .+
£ lengths of various marine cables was conducted. The test sitég,*
a sandbar at the mouth of Holbrook Cove in Castine, Maine, was
chosen to insure uniformity of current over the entire test
length. The flow of the incoming tide produced transverse
vibrations of the test cable over a broad range of Reynolds
numbers. Cable tension could be varied as desired. The ampli-
tude, frequency, and general behavior of the cable motions were
recorded. The results have been compared to the findings of
previous investigators, and interpreted in the light of known
properties of the body-wake interaction. A method of testing
anti-strumming fairings is also presented, along with the re-
sults of such a test.

Thesis Supervisor: J. Kim Vandiver
Title: Assistant Professor of Ocean Engineering
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NOMENCLATURE

Reynolds number, Vd/v

kinematic viscosity (1.3 x 10—5

ftz/sec)
current speed, ft/sec

cable diameter under tension (= 75")
Strouhal number, f4,/Vv

natural frequency at which vortices are shed
cable natural frequency

actual frequency of vortex shedding
observed frequency of cable vibration
fundamental natural frequency
non-dimensional frequency,(f//TXZL/ﬁ;)
logarithmic decrement of damping
virtual mass per unit length

tension

fluid density

vertical displacement of cable

amplitude of vibration

cable length

s



CHAPTER I

INTRODUCTION

The problem of vortex-induced vibrations of marine cables,
known as cable strumming, is one of present concern to those

who work in the ocean. A great deal of money and effort is

being expended to determine the exact causes and controlling

features of the process, and to develop satisfactory means of
preventing these vibrations. These motions, usually trans-
verse to the incident flow direction and often of considerable
amplitude, can lead to premature fatigue failure of mooring
lines. Oceanographic data may be degraded when sensors are
moving along with the cables to which they are attached. Hy-
‘drophones may pick up spurious pressure signals due to the
acceleration of the instruments themselves. There is an
increase in drag associated with the shedding of the vortices,
and this means that more power and longer cable lengths are
required to tow a submerged load at a given depth. The low-
frequency motions may be an attraction to marine 1life,
increasing the chances of "fish-bite" damage.

There are means of suppressing these vibrations, but they
are often costly, and not applicable to all needs. Fairings,
consisting of plastic strips that stream out behind the cable,
can significantly reduce strumming, but of course add to the
cost and weight of the cable. Drag is also increased, and

there may be a problem winding these fairings on winches or
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passing them through shcaves. Optimum strcamer lengths or

amounts of coverage have not been adequately detcermined.
Basically, at Reynolds numbers of 40 and above, the
separated flow behind a bluff object, in this case a flexible
circular cylinder, rolls up into vortices which are then con-
vected downstream in the Von Karman vortex street. Above
about Re = 300 these vortices form asymmetrically, rolling
off each side of the cylinder alternately. There is a lift
force produced due to the pressure differential between the
two sides of the cylinder resulting from the asymmetry. The
fluctuating force produces vibrations in a direction trans-
verse to the fluid flow. 1In the case of cables, these motions
commonly reach peak-to-peak amplitudes of up to two diameters.
Rigid objects such as pilings are also subject to these
forces. Large circular piles used in the construction of a
deep-water jetty off Immingham, England, vibrated at signifi-
cant amplitudes during periods of tidal flood, requiring
design modifications to provide additional strength [37].
Above water, the same process is responsible for Aeolian tones,
vibrating transmission lines, and damaging oscillations of
tall smoke stacks in a strong wind. Vortex trails have even
been observed in satellite photographs of cloud formations
downstream of mountain peaks on ocean islands [3].

There is an extensive literature in the field of vortex

shedding. Most experiments have been conducted in wind tunnels
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or small water channels. Cylinders tested have usually been
smooth, and most often fixed rigidly in place. When vibrating
cylinders were tested, they were again usually short lengths,
either driven sinusoidally or spring-mounted. Most of the
attention has been paid to the wake that is formed behind the
cylinder. In short, there has been a near-total lack of data
garnered from observation of a long length of flexible cable.
Data from the few cases that have been studied arc hopelessly
complex due to non-uniformities of current and tension over
the span of the cable.

The present experiment was designed to help fill this
experimental gap. It was intended to be a field test of as
long a cable as possible, while still satisfying the ecxperi-
mental restrictions of constant tension and uniform current.
Such an experiment would more closely approximate true ocean
conditions than could be achieved in a laboratory. Emphasis
would be on characterizing the response of a number of cables
subjected to varying, but known, experimental parameters, and
upon refining techniques of acquiring accurate data under
field conditions. The data could then be compared to the
laboratory and full-scale results. In addition, a means of

easily determining the effectiveness of anti-strumming fairings

was devised.
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CHAPTER 1I

BACKGROUND

2.1 Rigid Cylinders

Since the early recording and elucidation of the basic
nature of the vortex shedding process by Strouhal [38], Ray-
leigh [33], and Von Karman [43], there has been a great deal
of study, both theoretical and experimental. For smooth,
stationary cylinders the process is fairly well understood.
The frequency at which the vortices are shed can be determined
from the relationship fs = 8V/d, where S is the non-dimensional
Strouhal number, V is the flow speed, and d@ is the cylinder
diameter. S is primarily a function of Reynolds number.
Roshko [35] investigated the process for Re up to 104. Below
Re = 40 vortices are formed simﬁltaneously on both sides of
the body. At higher Re, vortices form and are shed alternately
from each side of the cylinder. Associated with the shedding
is a pressure differential across the cylinder which results
in a lift force, transverse to the flow, at the same frequency
at which the vortices are shed. In-addition, there is a fluc-
tuating drag force at-twice the shedding frequency. The
magnitude of these forces has been measured by many investiga-
tors, in both wind and water tunnels [4,13,14,27,34].

In the range 300 < Re < 104, Roshko found the vortex wake

to be irregqular, with frequency components in a finite band-

width about a predominant shedding frequency. Throughout this
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range the Strouhal number is approximately constant at S=.21.
The shedding frequency is thus directly proportional Lo the flow
speed. llis measurements have since been verificd and the re-

sults extended throughout the sub-critical Re range, up to

Re = 2 x 10° [4,7,13,14,27]. A plot of S vs. Re can be found
in Figure 1. Vortex shedding has been noted at higher values
of Re, but with a great deal of scatter in the measurements
[19]1. 1In addition, effects of turbulence, surface roughness
and non-circular cross-section have been investigated [2,7,15,
27,36].

Although the shedding frequency everywhere along the span
of a cylinder is determined by the Strouhal relationship,
there may be little or no spanwise correlation of the phase
and amplitude of the shed vortices. Some studies have found
the vortex filaments to be straight, but inclined to the

cylinder axis [6,21,35], but this is not universally the case.

2.2 Oscillating Cylinders

The case for cylinders which oscillate is very different.
The transverse motion of the cylinder imposes a correlation of
the shedding along the span. The shed vortex filaments are
parallel to the cylinder. Lift and drag forces are amplified,

and increase with increasing amplitude of vibration.

Most of the experiments performed on vibrating cylinders
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have utilized short, rigid cylinders driven externally [5,21,
22,39,40]. The usual procedure is to hold flow speed constant
and vary the driving frequency, while measuring lift and drag
forces and observing the characteristics of the vortex wake. .
A smaller number of studies have utilized rigid cylinders

which were free to vibrate, either spring mounted at the ends
[13,27], cantilevered [20,42], or mounted in a pivoted arrange-
ment [28]. Griffin [16] conducted an experiment specifically
to verify that the free and driven approaches produced the

same results. Only a very few experiments have been performed
on flexible cylinders [6,8,29,30,31,32], either cables or

elastic tubing.

The same general behavior has been observed by all of the

experimenters. The interaction of the cables or cylinders and

the wake is that of a non-linear self-excited oscillator. For

cables and spring mounted cylinders, the 1lift and drag forces

and vibration amplitudes show marked peaks when the natural
frequency of vortex shedding, fs' coincides with the natural
frequency of body vibration, fn. The response decreases as ol
the two frequencies are moved apart. Driven cylinders also
show a peak in lift and drag forces when the wake natural
frequency and the driving frequency coincide.

Over a range of fs around fn' however, the actual vortex
frequency, fv’ will remain at fn' The vibration causes the

vortex shedding process to synchronize, or lock in, with the

g
E
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body motion. The range over which this occurs has been found
to be as great as *+25% of the body frequency [5,13,21,22,39].
The actual extent of the lock-in range is dependent on the
amplitude of vibration, being wider for greater amplitudes.
The lock-in bandwidth also increases with decreasing damping.
Griffin [32] and Koopman ([21] have found that there is a mini-
mum amplitude, on the order of 0.1 diameters, below which
lock-in will not occur. The peak displacement amplitudes
commonly observed for cables and spring mounted cylinders are
in the range of .5 to 1.0 diameters, well above the lock-in
threshold. At the end of the lock-in range, the wake fre-
quency jumps to the fs associated with the flow conditions.

For a flexible cable vibrating at the second mode, Ram-
berg and Griffin ([32] observed that at the antinodes, where
the cylinder motion exceeded 0.1 diameters, the shedding was
entirely at the cable frequency. At the nodes the shedding
was entirely at fs. In between, the record showed varying
components of both frequencies.

The synchronization of vortex shedding along the span
results in increased lift and drag forces. As mentioned above,
there is a sharp peak at coincidence of fs and fn' with ampli-
tudes trailing off as fs moves away from fn’ even though fv
remains at fn' When the wake is not locked in a beating
behavior is often observed, the two component frequencies

being fn and fv. It has also been found that fV may have a

.,
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value which is between the fs expected and the body frequency

fn {1,5,40].

When fv is locked in to fn' the motion is said to be
self-excited. This term is used to describe vibrations for
which the input force only exists by virtue of the body motion
(11]. IA the case of vortex shedding there would be a force
whether there was lock-in or not, but it would be very differ-
ent in the two cases. Di Silvio [12] terms the motion self-
controlled to capture the distinction.

There is no clear statement in the literature as to how
to determine fs, the natural shedding frequency for vibrating
cylinders. The Strouhal number of .21 for stationary cylinders
does not apply to all cases. 1In almost all presentations of
data, it is noted that the peak amplitudes, either of vibration
or lift force, occur at a frequency which is less than the
frequency predicted using S = .21. Most authors do not deal
with the issue explicitly, and it is necessary to pick values
from their plotted data. For example, in the paper by Tanida,
et.al. [39] the peak lift forces occur at fvd/v = .17 at Re =
4000. 1In addition, the non-lock-in points plotted follow the
same relation. It would be expected that the peak forces
would occur when the natural, or preferred, shedding frequency
is coincident with the body natural frequency. Other authors

find similar results for the peak forces [5,6,13,16,20,22,28,

30]. Some do find peaks where fvd/v = .21, but there is
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definitely not the consistency associated with the stationary
cylinder Strouhal number. King et.al. [20] do discuss this
issue briefly.

Griffin and Ramberg have been the principal experimenters
with marine cables [16,29,30,31,32]. They are concerned
primarily with resonant vibrations. Vickery and Watkins [42]
equated the energy input to the cable per cycle (assuming a
sinusoidal forcing function) with the energy dissipated by
damping at resonance and found that the amplitude was primarily
dependent on the dimensionless group "”%ﬁz , where 8 is the
log decrement of free vibration of the system. Griffin uses
this in the form of a response parameter SG-'ZnSz(?S—?,E, where S
is the Strouhal number for spationary cylinders. The peak
amplitude at resonance is found to be dependent on SG’ with a
threshold at SG = 4.0. For higher Sg the vibration will not
exceed 0.1 diameters, the minimum amplitude for lock-in [29].
The data found in the present experiment will be compared to
Griffin's results in this framework. Griffin makes no pre-
dictions related to possible amplitudes when the system is not
at resonaﬁce.

There have been a number of review articles on vortex
shedding [3,23,24,25], which serve as a useful guide to the
state of knowledge of the subject and the prime questions of
interest. In addition, a number of attempts have been made to

formulate mathematical models which correlate with experimental
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observations [12,17,18,27,41]1.

2.3 Suppression of Shedding

Numerous methods have been tried to prevent cable strum-
ming. The usual approach is to change the flow characteristics
by adding streamer-type fairings to the cable. These can be
effective, but they have the disadvantage of increasing drag.
Addition of splitter plates or helical strakes behind a
cylinder has been attempted by Roshko [36] and others [2,8,15,
42] . Depending upon the configuration, the attempted fix may
suppress the shedding entirely, reduce it in amplitude, or

even shift it in frequency. A faired cable was tested in the

present experiment.




CHAPTER III

BASIC THEORY

A taut cable can, as a first approximation, be modelled

as an ideal string. Assuming no damping, the corresponding

kS 2
wave equation is T%‘eﬁmg—}, . The natural frequencies of
this system are §: 2 /% , n=1, 2, 3,.... The correspond-

ing modal shapes are 3=Ryn5f1. The inclusion of damping
would mean only a slight shift in the calculated frequencies.

For vibrations in water, the added mass must be taken
into account. The theoretical added mass coefficient of a
circular cylinder is 1, meaning that the added mass is equal
to the mass of the displaced volume of water. This was the
number used in calculating m, for the cables. There is evi-
dence [29] that the added mass is essentially independent of
wavelength, frequency, and amplitude of vibration, in the
range of interest here, and is the same in still and flowing
fluid. The validity of using the string model was checked by
comparing predictions for the fundamental mode in air and in
water to actual observations. The fit was found to be close.
The mode numbers referred to in the discussion of experimental
results were found using the ideal model as a basis.

The use of the string equation neglects the bending
stiffness of the cable. This is a good approximation for the
low modes, where the curvatures are small, but for the higher

mode shapes the effect of stiffness becomes more important
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and will cause the observed natural frequencies to be higher
than calculated by the simple string equation. Such effects

were observed in this experiment.
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CHAPTER IV

THE EXPERIMENT

4.1 Previous Work

This experiment grew out of the preliminary tests con-
ducted by Jessup and Davis as a part of the 1974 Ocean
Engineering Summer Laboratory, which is conducted yearly in
Castine, Maine, in cooperation with the Maine Maritime Academy.
They attempted to procure quantitative data on cable vibra-
tions. Their experimentation with various motion transducers
led to the design of the "fish", described below. As stated
in their report [9], they worked first with cables 250 yards
long, stretched from shore to shore across a sandbar at the
entrance to Holbrook Cove. The data from this set~-up were
difficult to interpret, so they attempted to isolate a 50 foot
test section by using chains to link a cable of this length to
lengths of synthetic rope which ran up to shore. The rope was
tied to trees at both ends, with a winch and strain gauge ten-
sion-measuring device at one end. The test section was
maintained at a constant depth of submersion by a float and
anchor system. This permitted the experimenters to position
themselves behind the cable in a boat and reach into the water
to make measurements.

The present experiment was a refinement of the previous
one, both in terms of instrumentation and cable deployment.

A problem with the earlier approach was that one could not

.”‘
&
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really be sure that all of what you were secing on the records
was due to behavior of the test section alone. Changes in

tension due to vibration of the supporting ropes outside the

test length could be transmitted longitudinally to the test
section. The current would clearl’ not be the uniform over the

entire immersed length.

4.2 Experimental Set-Up

The real aim of this experiment was to obtain reliable
qualitative and quantitative data on an intermediate length of
cable, intermediate in that it would be much longer than lab-
oratory samples and yet more tractable than a full-scale
system. Comparisons would be made between the results of this
field test and the many laboratory tests on stationary or
oscillating, rigid or flexible cylinders. This required a
known length of cable in isolation, maintained at a known
tension in a known uniform current. It meant providing a
stable, independent support system so that appreciable tensions
could be applied with no ties to shore.

The sandbar at the entrance to Holbrook Cove was again
selected as the test site, since it offered shallow depths at
high tide, proximity to the shore base, a dry platform at low
tide for setting up the test cable, and long spans of approxi-

mately uniform current. This latter feature was verified by
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current measurements made before the actual test site was
selected. 1In addition, the current speed varied over a wide y
range during the course of a tide, providing a corresponding
range of Reyriolds numbers. Ruas were made only on incoming
tides, and current speed varied from a high of about 2.3 feet
per second (.70 meters/second) when water first spilled over
E . the sandbar, to a low of 0 at slack tide. A photo of the
sandbar can be seen in Figure 2.

& Once the test site was selected the cable mounting

system was established as in Figure 3. A test length of 76.5'

(23.3 meters) was m~rked off. At either end of this section

three 10-foot. (3 meter) sections of steel pipe were embeddec

at an angle in the clay bed of the sandbar, using a water pump :
to create a concentrated water jet for clearing a path. All E
of the pipes were sunk so that no more than a few inches pro-
truded above the level of the bar. This was important since
there was frequent boat traffic into and out of the cove, and
nothing could be fixed in place; it would constitute a hazard
to navigation when we left the site each day.

The outer two pipes at each end took up the tensile load,
which was divided between the two pilings by a short length of
conihecting cable. The actual tensions used were in the range
of L00 to 600 pounds. Shorter sections of pipe were slipped
into the tops of the inner pipes and locked in place with a

bolt. A sheave, fastened near the top of each of these insert
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Photograph
Sandbar in

of experiment site.
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pipes, supported the test cable.

In practice, setting up the site each day started with a
bare sandbar, with only the piles permanently out on the site.
Upon arriving at the sandbar, the inserts were secured in
place, and the day's test cable laid out from one end to the
other, passing over the sheaves at each end. An additional
length of rope was fastened between the bases of the support
piles. The instrument signal cables were secured to this
line. This guide rope was also used as a hand-hold for divers
venturing out along the cable while the current was running at
high speed.

A tensiometer was shackled in line between the support
rope and the test cable at the west end of the site. A zero
reading was taken on the tensiometer before initial tensioning
occurred. A come-along winch fastened between the east end of
the test cable and the support posts at that end served to
adjust the tension. The tension could be varied at any time
during the experiment by sending a swimmer into the water to
operate the winch.

Once the cable was tensioned the accelerometers were
fastened in position and the signal wires run along the guide
rope and into the boat. The boat, a 17-foot (5 meter) open
craft with an outboard motor, was always moored at the east
end of the site. It was held in position by an anchor securely

wedged under a rock off the bow, with a second off the stern




to prevent sideways motion. A safety line was also tied to
the support posts to insure that the boat would not be carried
rapidly away in case the bow anchor failed.

This arrangement positioned the cable about two feet
above the sandbar, out of range of any boundary layer effects.

The cable set-up required about 30 minutes, and was timed so

¢ that at completion the first water was flowing over the sand-

&

bar. Next the electromagnetic current meter was placed in
i position, and lastly just when the water reached the level of
the cable, the "fish" was fastened to the cable. Once all
) signal wires were led back aboard the boat the set-up was
i f complete. Buoys were placed in the water to mark the cable

position for passing boats.
The actual run of the experiment consisted of recording
. intervals of data -- current meter, tensiometer, "fish" and
accelerometer outputs -- as the tide ran its course. Contin-
uous recordings were not made, as this would have provided a
. surplus of data, much of it redundant. Instead, the current
was monitored for changes, and data were taken for short
periods of time at frequent intervals. At times the tension
was changed rapidly by keeping a swimmer in the water, takirg
about 30 seconds of data at one tension setting, and then hav-
ing him change the tension. The intent of this was to determine

the effect of changes in tension at a constant current speed.

This required that the procedure be run rapidly, as the current
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itself varied fairly quickly. Another test was a traversal
along the cable of one accelerometer, while leaving the other
in a fixed position. A diver or swimmer was required to swim
along the cable, moving the accelerometer to predetermined
positions. This would hopefully give some insight into the
extent of spanwise correlation of the cable behavior. Did the
entire cable act as a unit, or did localized areas respond

independently?

AW

At slack tide, when the cable stopped vibrating, divers
entered the water to disassemble the experiment, which was now

covered by 10 feet (3 meters) of water. This procedure was

essentially the reverse of the set-up, and posed no great
difficulty. On one occasion the experiment was taken down
with the current running at 1.5 knots, an operation which

y required caution since the current was difficult to swim
against for extended periods. Upon completion of disassembly
all that remained at the site were the tops of the support

posts poking out of the sandbar.

4.3 Summary of Cable Data

The cables tested were a jacketed wire rope, a jacketed
Kevlar fiber rope, and a polypropylene and polyester synthetic

rope. Details on all of these ropes can be found in Table 1,

along with the range of experimental conditions to which they
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were subject. They are representative of cables in common

use in ocean applications.

4.4 The "Fish" Transducer

Details on most of the instruments used can be found in
the Appendix. The "fish" is described at greater length here,
since it was developed specially for this project.

The fish (hereafter referred to without quotation marks)
measures displacement directly, and thus yields records which
are easier to interpret than those of the accelerometers.

The design of the fish grew out of the earlier experimental
work of Jessup and Davis. They tried numerous methods,

such as motion pictures and sonar, of recording cable motions.
Their greatest success was achieved with what was probably the
simplest method of all. They sealed a rotary, linear potenti-
ometer into a PVC cylinder with the shaft protruding through
an O-ring seal. An arm was attached to the shaft. The other
end of the arm was fastened to the cable under study. One of
the experimenters held the unit fixed in position behind the
cable. The vertical displacements of the cable caused rotation
of the potentiometer shaft, yielding voltage fluctuations
directly proportional to the displacement of the cable.

The fish is an improved version of this method, and does

not require a person holding the unit in position. A photo-




o
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graph of the fish behind a cable can be seen in Figure 4.
Figure 5 is a drawing of the fish, showing details of con-

struction. Basically, the fish provides a stable platform for

a 50KQ rotary potentiometer. The unit is neutrally buoyant

and trimmed in pitch. The connecting arms attach to the

potentiometer shaft protruding from one side of the fish, and

ride in a hole drilled as a bearing in the other side. The
parallel arms prevent twisting of the unit.

Drag forces cause the fish to seek an equilbrium position
behind the mean location of the cable. Thus no external ad-
justments are necessary to accommodate changes in mean position
due to variations in cable catenary, which can occur whenever
current speed or cable tension change. The fish can follow
these slow changes in position, but cannot respond to the
rapid cable vibrations produced by the vortex shedding process.
The fish sits still while the arm translates vertically, vary-
ing the voltage output of a simple divider circuit. An op-amp
voltage follower is located inside the sealed fish body. The
three wires required for power, signal and ground emerge from ?

the tail of the fish, and enough slack is allowed so that the !

wires do not influence the fish position.
The frequency response of the fish was determined in the
small water tank in the Ocean Engineering laboratory. Tests

showed, and observations in the field confirmed, that the fish

response was steady for higher frequencies. At lower vibration
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Figure 4. Photograph of fish in position behind cable.
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frequencies, on the order of 3 to 4 Hz and below, the fish
tended to follow the cable motions, with some phase lag. In
the field, these low-frequency motions occurred when the cur-
rent was the weakest, which in turn meant that the drag forces
on the fish were also small. Friction in the O-ring shaft
seal and the potentiometer then caused the fish to move. 1In
addition, surface wave motion influenced the position of the
fish when the depth of submersion was small.

The voltage output of the potentiometer is a direct
record of the motions of the cable. Spectral analysis of the
fish and accelerometer records consistently revealed the same
frequency components in the vibration record, attesting to the
performance of the fish. The sensitivity of the unit is
1.52"/volt (3.B6 cm/volt). Samples of the fish output can be
seen in many of the figures. Improvements are now being
worked on, in order to make the fish easier to construct, and

to improve its low-frequency response.
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CHAPTER V

RESULTS

5.1 Analysis

All data were played back onto a Beckman Type S-II Dyno-
graph 4-channel strip-chart recorder, providing a visual time
history of all of the test runs. A sample of the record thus
obtained is shown in Figure 6. These charts were first exam-

ined visually. At periodic intervals, chosen to provide a

reasonable characterization of the cable data, frequency was
determined by counting vibration peaks over a known period,
and current and tension readings were obtained from their
respective traces. The numbers thus obtained were used to
calculate the observed Strouhal number f4,/v, the Reynold's
number VdA/, and the non-dimensional mode number F=<¥2Lf§; .

F is the ratio of the observed frequency f to the calculated

. I T .
fundamental frequency at that time, 7L ﬁ;; . This had to be
recalculated for nearly every point since the tension changed
so frequently. The amplitudes were calculated from the fish
records, and a qualitative description of the response behav- ;

ior was noted. ;

el

In addition, numerous sections of the record were anal-
yzed on a Ubiquitous Model UA-15A Spectrum Analyzer. It
should be noted that the best way to get a feel for the actual

behavior of the cables is to go over the strip-chart record-

ings, and observe how the cable behavior shifts in response
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accelerometer #1

.24"/cm
10.4 Hz
1l cm
‘ fish
. Ik Ll .30"/cm
. i o I R ALY u“‘} . 1 T 10.4 Hz
. ' EM current meter
2.0'/sec
tensiometer
125#%
- - - - - ‘ i
i

Figure 6. Sample of strip-chart recording of
transducer outputs.
Blue Streak.
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to changes in experimental conditions. A tabulation of the
data taken for each cable is presented in the Appendix. The
time history listing gives the points in the order in which
they occurred. A computer program was written to sort the
data on the basis of any desired parameter as an aid to inter-
pretation. These tabulations will be referred to as the data

are discussed.

5.2 Behavior

Most of the vortex shedding characteristics observed in
laboratory tests were found, or at least indicated, in the
behavior of the test cables. It should be noted that only the
cable amplitude and frequency were measured here, while most
of the laboratory studies included hot~-wire measurements of
the shed vortex frequency. These two frequencies are not
necessarily the same, as discussed earliexr. If the driving
(vortex) frequency is close, but not exactly equal to, a
resonant frequency of the cable system, the dominant response
could be at the cable natural frequency, due to the mechanical
amplification of the system. The bandwidth of the shedding
process is not infinitesimally small, so there is energy being
input over some range of frequencies. Proximity to a resonant
frequency will influence the response. 1In this light, three

major regimes of cable behavior could be distinguished: res-




onant lock-in, non-resonant lock-in, and non-lock-in.

Resonant Lock-In

Resonant lock-in is characterized by extremely stable
motion of the cable, as exemplified by the strip-chart record-
ing in Figure 7a. The cable displacement is clearly sinusoi-
dal, and the amplitude remains essentially constant. As
expected, the spectral analysis of such a section shows a
single sharp peak at the frequency of vibration, as in Figure
8a. It is postulated that this behavior occurs when the
natural shedding frequency corresponds within a few percent
to a mechanical resonance of the cable. The driving and
response peaks are at the same frequency, and the result is a
motion in which the input energy matches the energy dissipated
by damping, producing stable conditions. Even in the rapidly
changing conditions encountered in the field, this behavior
sometimes persisted for several minutes. All of the cables
tested showed a greater tendency to lock in to the lower modes

{one - four) than to the higher ones.

Non~Resonant Lock-In

A sample which would be termed non-resonant is illus-
trated in Figure 7b. The motion in this case is not as steady
as that of the resonant lock-in, but there is a fairly easily

determined mean amplitude, and the motion is again nearly
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c) Non-lock-in. Rlue Streak. 170 1bs, .8 {t/sec, 3
on trace. Between second and third nodes.
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Representative samples of "fish" re
p

cable behavior.

Ficure 7.

.6 ft/sec,




-40-
volts a) Resonant lock-in
I L)
0 10 20
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Hz
volts c) Non lock-in
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0 10 20
Hz [
Figure 8. Samples of spectrum analyzer output. ;i
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single-frequency, with a spectral bandwidth only slightly
broader than that for resonance (see Figurc 8b). There is no
apparent regularity to the fluctuations in amplitude, and no
apparent beating effects.

The distinction between resonant and non-resonant behav-

ior was emphasized at times during the experiment when the

tension (and therefore the natural frequency) was constant

and the flow velocity varied slightly. A current shift of

only a few percent was observed to be sufficient to induce a
marked change from regular to unsteady motion, or vice versa.
Remembering that no wake measurements were madc, it is postulated
that this behavior occurs under conditions of forced synchroniza-
tion of wake and cable frequencies. That is, the natural shedding
frequency, fs’ is not coincident with the natural cable
frequency, but the amplitude of vibration is sufficient to

impose synchronization and fs is within the lock-in range.

Random instabilities are then probably responsible for the
observed irregularities of behavior. Simultaneous cable and

wake measurements would be required to verify this.

Non-Lock=-In

Under non-lock-in conditions, as seen in Figure 7c, the
amplitude fluctuations are severe. It is expected that this
occurs when fs is far from a cable resonance, and the resulting

motion is controlled by the shedding process. It must be noted that




fosa

a vibration amplitude greater than 0.1 diameters was found by
other investigators to be a necessary, but not a sufficient,
requirement for lock-in to occur. Thus it is quite feasible
that vortices could be shed at fs while the cable responded
at fn. Indeed, records with clear beating were often ob-
served, as seen in Figure 9. The component frequencies were
the cable natural frequency and the frequency of vortex shed-
ding. The spectral record of a non-lock-in section can be
seen in Figure 8c. There is a peak at the observed vibration
frequency, but the bandwidth is much greater than for the
other two modes of behavior.

In all three modes of behavior the motion appears to be
consistent along the span of the cable. Simultaneous meas-
urements at widely spaced points produced similar records.
Although transient differences may haveappearaioccaéionally,
there was no substantive difference. At times an accelero-
meter near one of the support posts would show a strong com-
ponent of the second harmonic of the strumming frequency.
This seems to be an end effect, as it was verified that this
component weakened rapidly as the instrument was moved away
from the post. It seems reasonable to conclude, therefore,
that the entire span of the cable was experiencing similar
motions at any given time.

The preceding was a general behavioral description of the

observed cable vibrations. 1In what follows additional evidence
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for the categorization will be provided, along with quantita-
tive results. It must be .uoted that there is a certain degree
of subjectivity involved in the assigning of records to one
class or another. At times the behavior was borderline |
between two of the modes. For example, the amplitudes might
not have been really constant, but the records may have shown

none of the strong fluctuations associated with a non-resonant

section.

5.3 Phase Information

During nearly every run, one of the accelerometers was
traversed over as much as 20 feet (6 meters) of the cable
span, in short hops. At each stop a short record was taken.
The observed pattern of the records provides support for the
breakdown made above. If a taut cable is vibrating at its nth
natural frequency, there will be n - 1 nodes along the span
(not counting the forced nodes at the posts). On opposite
sides of each node there will be a 180° phase shift in the
displacement. This pattern was found for cables vibrating
resonantly or non-resonantly. The signals from the stationary
accelerometer or fish and the traversed accelerometer were
either exactly in phase or 180° out.

It is necessary to remark, however, that no actual nodes

were found, either by divers observing the cable in the water,
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or in the instrument outputs. The exact reason for this is
not known. If a 180° phase shift does occur, as was clearly
observed, it must be associated with a nodal point. It is
possible that some process is causing the location of the node
to be unstable, so that no single point will remain stationary
over an extended time, Spurious travelling waves of small
amplitude could also hide the existence of nodes, and yet
still allow the dominant behavior to be observed by the phase
relationships along the cable.

Under non-lock-in conditions, no such consistent pattern
was found. Comparing the outputs of two transducers reveals
only a constantly shifting, and apparently random, phase
relationship. This is similar to the observations of station-

ary cylinders or non-locked-in cables in the laboratory.

5.4 Amplitude

The observed amplitudes can be found in the tables in the
Appendix, and are plotted in Fiqures 10 through 12. A number
of points should be kept in mind when examining these values.

i) All data are taken from the recordings of the fish,
the direct displacement transducer. Since the accelerometer
output is proportional to auf small vibration components at

harmonics of the predominant strumming frequency produce large

signals. Interpretation would require spectral analysis and

|
!
|
|
i
'
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subsequent integration of the areas under the peaks. In cases
where the accelerometer signal was predominantly a single
frequency, the calculated amplitudes compared well with the
results from the fish. 1In order to be consistent and avoid
misleading results the accelerometer was used only as a check
on the fish records.

ii) The flow, and therefore the vibration characteristics,
changed continually. The amplitude data were selected from
records that had exhibited a steady vibration behavior for a
sufficient length of time to insure that transition from one
type of vibration to another was not occurring. Within these
steady sections the amplitude was estimated from that portion
exhibiting the highest average response over many cycles.

This was intended to present a worst-case behavior.

iii) No corrections were made for the position of the
fish along the cable. This would not be expected to make a
great deal of difference under non-lock-in conditions where
no stable mode shape would be expected. Under resonant condi-
tions, however, the position of the sensor could be highly

important if the cable took on a true sin "Zx mode shape over

the entire cable length. As mentioned above, no stable nodes
were observed. Attempts to scale the data by a factor taking
into account the fish position did not produce a smoothing of
the data.

It is clear both from the three graphs, and from the tab-
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ulations in the Appendix sorted by amplitude, that the largest
amplitudes tended to be associated with resonant vibration
behavior, although these were not greatly different from the
amplitudes of observed non-resonant behavior. The smallest
amplitudes were generally found when the cable was not locked
in. This is the result that would be expected on the basis of
the laboratory studies. Coincidence of the forcing frequency
and the natural frequency of vibration leads to the largest
response. The uncorrelated, unsteady shedding when the driv-
ing frequency is outside the synchronization range leads to
lower average power flow into the cable, and therefore lower
average response.

The resonant amplitudes were generally on the order of
0.5 diameters, non-resonant 0.4-0.5, and non-lock-in 0.3-0.4.
Within these regimes, the wire rope showed the greatest ampli-
tudes (and the strongest tendency to lock-in), followed by the
Blue Streak and then the Kevlar. The differences among the
cables will be discussed later. Although the non-lock-in
sections had the lowest mean amplitudes, the greatest indivi-
dual cable excursions did occur at these times.

There is a fair degree of scatter in the plotted data
points. This is no doubt partly attributable to the fact that
the study was conducted under constantly changing field condi-
tions, with known but uncontrollable experimental parameters,

and not under strict laboratory control. For the resonant and
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non-resonant results there is also the question of transducer
position along the cable span. The points plotted also rep-
resent a wide range of vibration modes, depending on the
tension at the time of measurement. Thus, two data points at
the same resonant frequency may represent vibrations at two
entirely different mode numbers. Whether frequency or mode
number is the more important determinant of the maximum ampli-
tudes that can be achieved remains to be determined. The

modal damping no doubt has a governing influence.

5.5 Tension Variation

At times during the experimental runs the tension was
varied rapidly by sending a swimmer to operate the winch.
This would have the effect of shifting the natural frequency,
and thus altering the interaction between shedding frequency
and cable frequency. In many cases a small shift in tension
produced a noticeable change in cable behavior. This is
essentially equivalent to holding the tension constant and
allowing current speed to change naturally. Figure 13 shows
the effect of such a tension change, with the behavior going
from resonant to non-resonant. The record reads from left
to right in time. 1Initially, the behavior was resonant with
the tension at 165 pounds. A drop to 155 pounds tension led

to the non-resonant behavior at the right side of the trace.
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The time covered by the record is about 20 seconds, during

which period the current did not change.

5.6 Mode Numbers

In examining the tabulation of results sorted by behavior,
it can be seen that there is a tendency (in this experiment
most conclusions are drawn from trends of overall observations)
for the resonant behavior, at least at the lower fregquencies,
to be associated with exact multiples of the fundamental fre-
quency (whole values of F). That is, the cable is responding
right at a natural frequency. Non-resonant points are gener-
ally associated with frequencies close to natural frequencies.
If there is true lock-in, whether resonant or not, the cable
would be expected to be vibrating at a natural frequency.
Small discrepancies could be due to various errors in deter-
mining F, such as errors in estimates of virtual mass, in
tension measurements or departures of actual natural frequen-~
cies from the values predicted by the ideal string equation.
Non-lock-in behavior tends to occur at frequencies comfortably
between modes. Notice that sometimes non-lock-in behavior
appears to be associated with whole number values of F. It
is possible for the wake and cable frequencies to be entirely
different, as mentioned previously. This could result in the

cable responding at its natural frequency, but unstably since
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the driving force is highly irregular. Further work must be

done to throw more light on this.

5.7 Observed Strouhal Numbers

Figure 14 is a plot of observed Strouhal number, fd/V,
versus Reynolds number for the cables tested. Both the Blue
Streak and the wire rope had values generally around .16 to
.17. Kevlar, on the other hand, seemed to follow quite a
different pattern, with Strouhal values on the order of .22
to .23. The reason for this difference is not yet known. It
seems to be too large to be accounted for by any systematic
error in the recording of the data.

Of particular interest is the range of Strouhal numbers
encountered for each cable. If there were no natural frequen-
cies involved, and the shedding frequency simply tracked the
changes in velocity, an essentially constant value of observed
Strouhal number would be expected, determined solely by the
factors controlling the vortex-formation process. If lock-in
occurs, however, as in reality, a different situation should
result. Over some range of current speeds the frequency will
remain constant at the natural frequency. When the velocity
is below the value that would produce shedding at fn’ the

frequency locks up to a higher value than would appear if there

were no synchronization. This would result in a Strouhal num-
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ber greater than the mean values. Conversely, if the frequen-

cy locks down from a higher value, a lower observed Strouhal
number would result.

In fact, examination of the data indicates (again, a
tendency) that this variation in fg/v does occur, and that
the "abnormal” Strouhal numbers occur when the cable is vi-
brating at a mode number close (within *.2) to resonance. This
is not a hard and fast rule, and there are many exceptions.

It would be expected that the motion should be non-resonant at
those times, but that is not always the case. The limits of
the measured values, .14 to .18 for Blue Streak and wire rope,
.20 to .24 for Kevlar, point to a lock~in range of somewhere
between 15 and 20% of the natural frequency. There is not

enough data to make more definitive statements on this subject.

5.8 Accuracy

Some leeway in interpretation must be allowed for experi-
mental error. More detail on the instruments and their
behavior can be found in the Appendix, but some of the relevant
points will be mentioned here.

The electromagnetic current meter used is sensitive to
current changes on the order of .01 feet per second. However,

due to a relatively crude calibration procedure, the actual

sensitivity of the device (that is, the actual voltage per foot

g 1=~ 7o
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per second of current speed) was only determined to within
t5%. Additional variations of current speed at locations
along the cable away from the sensor itself and small varia-
tions in experimental implementation cause the total error to
be on the order of +10%.

There was a small zero offset which was accounted for
when calculating all velocities. A small nick in the signal
cable, however, caused an additional, variable offset for a
few days before it was detected. Of the cable data presented,
only the wire rope data of July 24 is liable to be strongly
affected by these offset problems. The current values calcu-
lated for that day were found by assuming a constant offset
midway between the known minimum and maximum offset values.
For these data points, the errors might be as much as 30% at
the lower current speeds, where the relative effect of an
offset will be more strongly felt. The other runs are felt to
be reliable.

The tensiometer was calibrated a number of times. At the
higher tensions, greater than 100 pounds, the stated values
are probably good to 5%. 1In the low tension range, below 100
pounds, the accuracy is more on the order of 10%.

Frequency was determined by counting vibration peaks over
a known time on the record, and is felt to be very accurate,

within a few percent for the resonant and non-resonant sections.

For the broad band, variable phase, non-lock-in periods, the
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accuracy is probably much lower, down to about 10%.

5.9 Test of Anti-Strumming Fairing

An expériment was performed in order to test the effect-
iveness of an anti-strumming fairing. The helically wound
fuzz was removed from one-half of a 150-foot (46 meter)
section of the braided Kevlar (see Table 1l). The cable was
then arranged (Figures 15,16) so that both halves could be
deployed simultaneously, one directly above the other, with
the same tension on each. In this way both sections were
exposed to identical flow conditions. The fish was placed on
the lower (unfaired) section and an accelerometer was mounted
directly above it on the faired section. A sample of the
results can be seen in Figure 17. The data are also tabulated
in the Appendix. The test of this cable had to be curtailed
due to bad weather conditions, so that only a small amount of
data was collected.

The fairing had the effect of reducing the strumming
frequency, but did not significantly reduce the amplitude. In
applications where accelerations are more important than amp-
litudes, the frequency reduction alone can be valuable. The
spurious pressure signals that appear on hydrophones are an

example of this.
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Photograph of tensioning arrangement for
test of faired/unfaired cable. Faired

section on top.

Figure 16.
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CHAPTER VI

DISCUSSION

The cables tested in this experiment, despite their vary-
ing physical properties, exhibited the same basic characteris-
tics of behavior. These observed characteristics compare well
with the results found for shorter cylinder lengths tested
under laboratory conditions. The vibrations here termed
resonant, non-resonant and non-lock-in are suggestive of a
body-wake interaction with the same features as have been
determined previously. This experiment has served to demon-
strate the applicability of those results to the explanation,
and prediction, of the response of long flexible cables in
actual ocean use.

There were, however, quantitative and qualitative differ-
ences 1n the results for the various cables. These differences
are due to the variation in structural properties of the cables.
Cable damping has been found in the laboratory, and confirmed
here, to be a major factor in determining the maximum ampli-~
tudes of cable vibrations (at least under resonant conditions)
and the bandwidth of the lock-in region.

The wire rope had the highest mean amplitudes under all
conditions. The Blue Streak followed with the next greatest
amplitudes, and the Kevlar was clearly less active than either

of the other two. Drawing on data from Ramberg, Griffin and

Skop [29], who tested a wire rope sample, Blue Streak, and a
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Kevlar rope, an estimate can be made of the ltog decrement

for each, using 10llz as a standard for comparison. From this
]

the response parameter SG=2h5(‘—z%f-)can be calculated for each

of our cables. The results are tabulated here:

PREDICTED
CABLE N m slugs/ft S 2z,
WR .09 3.1 x 1073 .15 2.0
BS .13 3.6 x 1072 .12 2.0
KEV .15 4.9 x 1073 .13 2.0

It is not expected that these are accurate representations of
the maximum amplitudes attainable under field conditions.

This is merely intended to put the results in the framework of
other investigators. It should also be noted that the deriva-
tion of this response parameter is bas.d on theoretical con-
ditions only applicable to resonant vibrations.

The differing tendencies to exhibit locked-in behavior
are also attributable to the differences in damping. Wider
lock-in bandwidth is associated with lower damping, and indeed
in this experiment the wire rope displayed the strongest ten-
dency to lock in over the entire vibration frequency range
encountered. Only rarely did it produce wildly erratic

displacement records.
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The section of Blue Streak had a weaker tendency to lock

in than the wirce rope, but it did lock in over the entire
frequency range. The Kevlar showed a much stronger lock-in
behavior at low frequencies (and low mode numbers) than at the
higher frequencies. These results can be seen in the data
tabulations in the Appendix. The Kevlar has parallel strands
which have been fixed in urethane, and as a result has a
significant bending stiffness. At the higher frequencies the
simple wave equation for the string is not an adequat? model
for the dispersive waves which occur.

The reason, or reasons, for the significant difference in
the observed Strouhal numbers for the Kevlar is not yet known.
Some of the distinct features of this particular cable are its
large bending stiffness, the fact that is is buoyant, that it

had higher damping than the other cables tested, and that it

was only tensioned to a maximum of 2% of its breaking strength.

As to why these should make a difference, or even if they do,
remains to be determined. The Strouhal number for the other
cables compares well with data found by other investigators
for vibrating cylinders.

The results should be taken for what they are, which 1is
an extension of laboratory results to a 76.5' (23.3 meter)
cable deployed in the field under conditions of uniform cur-

rent and tension, with little mass loading from measuring

instruments. Actual uses of cables in the ocean are usually

s
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very different. The lengths utilized arce much greater, ap-
proaching infinity for all practical purposes, and tensions

and currents are usually not uniform. This could mean no

»
!;

simple natural frequencies as existed for our isolated test
lengths. Behavior might be expected to always be the non- b
lock-in type found here. Cables are often used to support

instruments in the ocean, which means lumped masses at inter-

vals along the length. If the instruments are in cylindrical

:
) housings they, too, can shed vortices at the characteristic
. frequency associated with their diameter, introducing another
) force into the system. The cables tested here were normal,
T

or nearly normal, to the incident flow. Very few tests have
been performed on yawed cables (see {6] for example), and it
remains to be determined what the effect of this might be.
This experiment also demonstrated a simple way of testing
the effectiveness of anti-strumming devices by direct compar-
ison of faired and unfaired lengths of cable under identical
tension and flow conditions. It also showed the utility of

the fish, a direct displacement transducer, for studies of this

[ VR

sort. Since its output is an exact and easily interpretable

representation of the ongoing cable displacement, it is a

useful tool for both on-the-spot assessments of the underwater
activity and for laboratory processing of the results. Not
having to adjust the output by frequency is an advantage over

accelerometers in this application. 1If, of course, the focus




of interest is the acceleration history of the cable, this

does not apply.

Follow-up studies could analyse a variety of configura-
tions, such as yawed cables, longer test lengths, higher
tensions, non-uniform currents, new fairings, or lumped masses,
to name a few. Improvements could be made in the design of
the fish. Tests could be run to more accurately determine
whether or not there are nodes in these cables, or why there
- are not, should that prove to be the case. It would be useful
k. to more accurately determine actual added mass, in-water
[ damping, and the true spacing of the natural frequencies. A
E preliminary extension of laboratory findings to field condi-
tions hés been established, but much more remains to be

* discovered.

|
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APPENDIX A

INSTRUMENTS

1. Accelerometers

Two single-axis, *10g accelerometers, Entran Devices
Model #EGC-240-10D, were used for amplitude and frequency
measurements. They are very small units, 3.56 x 3.56 x 6.86mnm,
and would not mass-load the cable significantly. Their nomi-
nal sensitivity is approximately 13 mV/g, and an amplifier

brought the output up to .1 V/g. Expected cable accelerations

were on the order of 2-5g, producing signals of appropriate
level for the tape recorder. The accelerometers were fastened
to sheet metal mounts which could be easily placed on the
cable, and also allowed the unit to be moved along the cable
by a swimmer. A picture of an accelerometer in position can
be seen in Figure 18.

Problems were encountered in the use of the accelerometers.
They were oil-filled and sealed to permit immersion without a
protective housing, but they were not damped. The resulting
mechanical resonance of the sensing beam made the accelero-
meters extremely sensitive to shocks, requiring great care in
a field operation. One of the accelerometers did fail com-
pletely as a result of this problem.

Changes in tension due to operation of the winch or

changes in current caused the cable and attached accelerometers

to rotate. Since these sensors exhibit a sine response it was




Figure 18. Photograph of accelerometer in position,
on section of cable with fairing removed.
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necessary to check frequently to insure that they remained
within 20° of the vertical to keep errors within 5%.

The output of an acceleration-measuring device is pro-
portional to the square of the frequency of the measured
vibration. Thus high frequency motions, or components of
motions, yield large output signals even when the vibration
amplitudes are small. Unless a vibration is narrow-band, with
weak higher harmonics, the output of an accelerometer can be
difficult to interpret without resort to spectral analysis.
This limits its effectiveness in a field operation, when real-
time results are valuable. Confusing signals can be produced
by higher-harmonic components of negligible amplitude. At
very low frequencies, on the other hand, the instrument output
becomes too small to process reliably, regardless of the amp-

litude of motion.

2. Tensiometer

A continuous record of the tension in the cable was
desired. A tensiometer rated to 750 pounds was provided by
the Naval Underwater Systems Center. Initial calibration was
performed at the Center in the range of 50-800 pounds, and
periodic checks were made in Maine by suspending known weights
from the unit. The resulting plot of voltage versus tension

yielded a response which was linear for tensions greater than

H
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about 75 pounds. A best-fit line yielded a relation of

T = 110V + 17.5 in this range, with T in pounds and V in volts.
This was the equation used in interpreting the tensiometer
records. Comparison with the Center's calibration showed the
results to be within 5-8% for tensions below 200 pounds,
within 1-5% for tensions up to 350 pounds, and within 1%
beyond that.

The output of the tensiometer did not seem to be entirely
stable, necessitating a daily check on the zero-tension volt-
age, which was not zero volts. It is felt that the problem
was most likely due to the circuit within the tensiometer.

The instrument operates from a 30V supply. A voltage regulator
within the instrument case provides a stable 24V to the pres-
sure transducer. This transducer normally has separate

outputs for power and signal ground. In order to cut down on
the number of through~hull connections required, the Center
installed a diode-resistor circuit which enabled a common
ground to be used. This set-up is not standard, and may be

the source of the inconsistencies encountered.

Attachments to the endcaps permitted rapid in-line
installment with shackles. Waterproof connections were made
with Mecca plugs. The cable tensions used ranged from 75 to
590 pounds, but were usually on the order of 150-250 pounds.
The tensiometer output voltage was either measured with a

digital voltmeter and recorded as a voice comment on the tape,
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or recorded directly onto a tape channel itself.

Small variations in tension accompanied the cable vibra-
tions, and indeed could often be seen on the tension record.
These fluctuating signals were very small compared to the
mean tension level, however, and were not considered to be

suitable for quantitative analysis.

3. Electromagnetic Current Meter

An electromagnetic current meter was furnished by Dr.
John Kanwisher of Woods Hole Oceanographic Institution. The
device operates on the principle that an electric charge pass-
ing through a magnetic field produces a voltage proportional
to the velocity of the charge. 1In this case the magnetic
field is supplied by a coil wound around the sensor duct, and
the moving charges are the ions in the water. The resulting
potential is measured by a pair of silver-silver chloride
electrodes. The complete unit consists of a sensor duct,
separate power and signal cables, and an on-deck control box
which contains the battery power, the required electronics,
and panel meter and BNC outputs.

The meter was field-calibrated by making repeated passes

at constant RPM along the side of the State of Maine, the

training ship of the Maine Maritime Academy. The distance was

a known 500 feet (152.4 meters). The time for :ach pass and
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the average current meter reading were recorded. Reversing
direction allowed the effect of water currents to be elimin-
ated. The resulting calibration showed a linear response up
to at least 5.6 feet per second (1.7 meters per second), well
above any expected currents on the site. There was a zero
offset of approximately 10mV. Sensitivity was 2.75 feet per
second per volt (.84 meters per second per volt).

It was discovered after the third test run on July 24
that the offset voltage of the meter had apparently changed,
rising to as high as 120mV. Careful checking revealed that
there was a small break in the signal cable insulation, at
approximately the level at which the cable entered the water
when taking data on the site. Since the offset changed
whenever the exposed section entered or emerged from the water,
this meant that the meter readings from the previous two runs
(on the first day the offset was consistent) could not be
viewed with complete confidence. An offset of 120mV represents
an adjustment of .33 feet per second (.10 meters per second)
in current. This amounts to 15-20% at the higher currents
speeds, but becomes increasingly significant as the current
level drops. Since the exact offset could not be recovered,
an across-the-board adjustment of 60mv, or .17 feet per second
(.05 meters per second), was applied to the current data taken
from those runs. Ordinarily an offset adjustment of 12mV, or

.03 feet per second (.01 meters per second), was applied. No

s G e e



|

*»

L2

-7

problems were encountered after the break was detected and
repaired.

The sensor head was positioned approximately 1 foot be-
hind the cable, and at a level of 2 to 3 inches above the
cable, so that the vortices shed by the cable would not in-
fluence the current readings. A section of pipe was welded to
a heavy metal base plate to serve as a support. A Teflon
washer at the bottom of this section supported a cylinder
which rode within the outer pipe, and on which was mounted
a plywood board which acted as a vane. The current meter
sensor unit was bolted to this board, and was thus self-
orienting with the current. Observation showed that the cur-

rent was essentially unidirectional throughout the tide.

4. Current-Meter Fish

The apparent success of the fish design prompted use of
the basic configuration in running a current survey along the
length of the cable test section. A larger, cruder model of
the fish was constructed, and the EM current meter mounted in
the tail, acting as the vertical fin. A section of line was
tied to one arm near the point at which it met the cable. As
hoped, the unit streamed out behind the cable and did not
respond to the cable vibrations.

A quick traverse of the test cable was made by using the
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guide rope to pull the boat hand over hand across the sandbar,
moving the current meter along with it. This enabled a trav-
erse of the test section to be accomplished within 5 minutes,
taking 11 measurements along the way. Rapid traversing was
necessary, as the current was by no means constant in time,

as mentioned previously. This test showed that the total
variation at the time it was performed was no more than 5%

over the length of the test section.

5. Recorders

Data were recorded on a 4-channel Tandberg Instrumentation
Tape Recorder Series 100. Power was supplied in the field via
a 12v automobile battery and 100 watt inverter.

At 1 7/8 inches per second, the recording speed used, the
frequency response is flat from DC to 625Hz. All four channels
are available for data recording, and channcl 4 can also be
used for voice comments. The unit is fully portable, and was
housed in a waterproof wooden crate for protection.

The data signals were recorded on the .5 or 1 volt ranges.
The recorder amplifies the signals to 5 volts full-scale for
playback. No problems were encountered in the use of this
instrument.

In addition to the instrumentation recorder, which was

used for all tests, a Gould 2-channel strip-chart recorder

PR




was used for occasional hard-copy records of cable bechavior.

This cnabled on-the-spot checks on cable bchavior and instru-

ment performance.

6. Power Supplies

The fish and accelerometers operated on 12V. This was
supplied by three 6V lantern batteries powering a 12V voltage
regulator chip. A precision divider circuit and voltage
follower generated a "ground”" level at 6V.

The tensiometer required 30V to power the 24V regulator
within the unit. This was furnished by a 200ma *15V DC power
supply operated from the same inverter which powered the tape
recorder.

The EM current meter ran on a battery supplied with the

unit. The Gould recorder operated on Ni-Cad batteries within

the unit.
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APPENDIX B

COMPUTER SORTING OF CABLL DATA

Output: The heading identifies the cable and the test date

for the tabulated data. Under the heading, the statcment
SORT BY ... lists the three parameters sclected by the
sorting program. The first listed is the primary choice, and
is presented in the left-hand column of the output table. In
case of equal values of the primary parameter, the points
are sorted on the basis of the second parameter listed.
Likewise, the third parameter can be used i1f necessary.

All sorting is done in the order of highest to lowest

values.

i) F: non-dimensional ratio of thc obscrved frequency to the

calculated fundamental freqguency .at that tension.

{ +
Fe Sk = Zrom, = o 2

2L/my= constant for each cable, assuming:
a) negligible stretching (L 1s constant)
b) m, = virtual mass per unit length = constant.
The added mass used was simply the mass of water
displaced by the cable (assumes added mass indepen-
dent of frequency.

c) vibration endpoints are at the sheaves -- fixed ends

d) AC tension changes are negligible
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Fothus represents the relative mode of the vibration.
¢.g., I = 1.5 mecans that the observed frequency is midway
betwcen the fundamental frequency and the first harmonic at

the given tension at the time of measurement.

ii) BEH: code for behavior of cable at time of measurement.

R - resonant lock-in
NR - non-resonant lock-in
N - non lock-in
Lack of a listing under this column indicates that the
behavior was not specifically evaluated for this data point.
This is a somewhat subjective assignment (see text for

details).

iii) FREQ: observed cable vibration frequency, in cycles/second.

iv) AMP: cable vibration amplitude, zero-peak, expre.sed as a

fraction of the cable diameter, which is listed at the top
of the page. Where cable diameter changes with tension, the
measured diameter under tension ( 75#) is used in all cal-
culations. Where AMP is listed as 0.00, this means that the
amplitude was not evaluated at this point, and not that the

cable was at rest.

v) ST: represents observed Strouhal number fd/V calculated

from the measured data.
RE: Reynolds number, Vd/», using tensioned diameter, and
rinematic viscosity Z = 1.3 x 10-5 ft2/sec. The seawater at

"istine was very close to 59° F, the temperature for which

.» walue 1s listed in standard tables. The calculated




vii)

S

viii)

Lo

Reynolds number was rounded off to the ncarest five.

VEL: current speed in ft/sec, as measured by the electro-
magnetic current meter. The data are presented with two
decimal places. Although the absolute accuracy of the measure-
ments is only one decimal place, the second place is maintained
for purposes of relative comparison of flow velocity, for
which it is a valuable indication. Very small changes in
current speed, on the order of .05 ft/sec, sometimes resulted
in a clear shift of cable behavior from resonant to non-reson-
ant, or vice-versa.

TEN: tension in pounds. Generally these numbers are rounded
off to the nearest five pounds. Where a rapid tensioning or
detensioning was performed the greater accuracy was retained
in order to give a more exact notion of the actual tension
changes, which were often small. This information is rost
useful in examining the time history presentation of the da+s

’

and is of lesser importance for thc other formats.

cation of fish, in feet from cast end of cable:
Cable tested Date of test Position
Blue Streak 7/18 45.5
7/27 45.5
Wire rope 7/24 51.5
7/27 51.5
Kevlar 7/26 40.0

Faired/unfaired 7/28 20.0
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